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Abstract 

This paper examines the adequacy of causal graph theory as a tool for modeling biological 
phenomena. I argue that the causal graph approach reaches its limits when it comes to 
modeling biological phenomena that involve complex spatial and chemical-structural 
relations. Using a case study from molecular biology, I show why causal graph models fail 
to adequately represent and explain biological phenomena of this kind. The inadequacy of 
these models is due to their failure to include relevant spatial-structural information in a 
way that does not render the models non-explanatory, unmanageable, or inconsistent with 
basic assumptions of causal graph theory. 
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1. Introduction 

In recent decades, major advances have been made in formalizing causation and causal 
inference (Spirtes et al. 2000; Pearl 2000) and in using these formalisms to address 
traditional philosophical issues such as the nature of scientific explanation (Woodward 
2003, Woodward and Hitchcock 2003). At the heart of these formal theories lie causal 
models that involve elements such as causal graphs, probability distributions, Bayesian 
nets, and structural equations. Causal models are appreciated because they allow for 
inferring causal relations from observed probabilistic correlations and for predicting the 
effects of manipulations and interventions, and because they can be used for representing 
and explaining causal relationships in very general, formal terms. 

Proponents of the causal modeling approach usually emphasize and exemplify the 
wide scope of this approach, for instance, by demonstrating its applicability to mechanistic 
explanations in biology and medicine (Casini et al. 2011; Clarke et al. 2014; Gebharter and 
Kaiser 2014). Similarly, Woodward’s interventionist theory of causation and causal 
explanation (2003), which makes extensive use of causal graphs, is supposed to be 
applicable to a wide range of causal relationships, including those in the biological realm 
(2011, 2013). 

In this paper, I agree that causal modeling is a powerful approach to formally 
represent, explain, and discover causal relations. However, I also think that its scope 
should not be overestimated and that it is important to also recognize the limits of the 
causal modeling approach. This paper explicates one of these limits: the explanation of 
spatially and structurally complex biological phenomena.1 Based on the analysis of a case 
study from molecular biology, protein-DNA recognition, I show that the formal tools of 
causal graph theory are too limited to offer adequate causal explanations of the biological 
phenomena that essentially involve complex spatial and chemical-structural relations (e.g., 
complementarity of chemical structures, spatial fit between protein and DNA, DNA 
deformations). 

Interestingly, Woodward has basically conceded this point, but he does not see this 
as a limitation of his causal modeling or interventionist approach to scientific explanation. 
Taking a relaxed stance, he argues that complex spatiotemporal information can just be 
added to the backbone of causal difference-making information and can be used to 
“organize” (2011, 423) or “fine-tune” (2013, 55) it. This paper shows that things are not 
that easy. Some biological processes involve complex spatial and structural relations that 
are central to explaining these processes but that cannot be represented in causal graph 
models without rendering the model un-explanatory, unmanageable, or contradictory. To 
be clear: This is not a claim about biological practice, for instance the claim that biologists 
wrongly use causal graphs to model certain phenomena. Rather, the purpose of this paper 
is primarily philosophical. Given the increased popularity of causal modeling approaches, 
it is important to recognize not only their strengths but also their limits: Which kinds of 

                                                       
1 Other limitations are that causal graph models provide a confusing and ontologically inadequate 
view of the entities and activities constituting mechanisms (Gebharter and Kaiser 2014) and that 
they fail to account for the complex dynamics of biological phenomena (Weber 2016). 
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causal phenomena studied in biology cannot be explained by means of causal graphs and 
why is this so? 

I proceed as follows. Section 2 briefly reviews the core notions and assumptions 
made in the causal modeling literature. In Section 3, I introduce my case study and carve 
out three kinds of information that any adequate explanatory model of protein-DNA 
recognition must include. Section 4 meets an important objection that challenges the 
overall project of this paper and thereby clarifies the causal character of the explanation of 
protein-DNA recognition. I then construct a causal graph model of protein-DNA 
recognition (Section 5), discuss different ways of including spatial-structural information 
into the model, and argue that each modeling strategy fails to yield an adequate 
explanation of the phenomenon (Section 6). 
 

2. Causal Modeling 

Causal models can be grouped into two kinds: causal Bayesian networks and structural 
equation models. For the purposes of this paper, I focus on causal Bayesian networks (also 
called causal graph models) and leave structural equations aside. Causal graph models 
combine mathematics and philosophy: the mathematical elements are directed acyclic 
graphs (DAGs) and probability theory, the philosophical elements are assumptions about 
the relationship between causation and probability (Spirtes et al. 2000).  

A directed acyclic graph (DAG) is an ordered pair G = V, E, where V is a set of 
variables and E is a set of directed edges (graphically represented by arrows). A variable 
can be binary, its values representing, for instance, the instantiation or non-instantiation of 
some property, or can have multiple values or even be continuous. 

Besides the DAG, a causal model consists of a probability distribution P that 
assigns a real number 0 ≥ r ≥ 1 to every value combination of variables in V such that the 
sum of all assigned r equals 1. The pair of DAG G and probability distribution P over V is 
referred to as a Bayesian network if and only if G and P satisfy the Markov Condition. A 
DAG becomes a causal graph as soon as its edges are interpreted causally: an edge leading 
from variable X1 to variable X2 is interpreted such that X1 is a direct cause of X2. When 
DAGs are interpreted causally, the Markov Condition is assumed to be the correct 
connection between causal structure and probabilistic independence. This assumption is 
called the Causal Markov Condition (CMC): A directed acyclic graph G and a probability 
distribution P over variable set V satisfy CMC iff every variable X in V is probabilistically 
independent of X’s non-descendants given X’s parents (i.e., INDEPPr(X, N-Des(X) | 
Pa(X))). CMC captures the intuition that conditioning on all common causes and on 
intermediate causes breaks down the probabilistic influence between two formerly 
correlated variables. Since causal models satisfy CMC, they allow for probabilistic 
prediction and manipulation. 
 

3. Protein-DNA Recognition 

Proteins that recognize and bind to specific DNA sequences are crucial to many biological 
processes. As transcription factors (TFs), they regulate gene transcription and thereby 
control processes such as cell differentiation. It is essential for the functioning of TFs that 
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they recognize and bind selectively to only one, or just a few, specific DNA sequences out 
of the millions present in a genome. Understanding this specificity of protein-DNA 
recognition and binding is of considerable theoretical and practical importance. 

 Current biological research on protein-DNA recognition and binding is 
multifaceted. Among the different aspects that researchers study are the following:2 

(1) Binding Sites Detection: Where in the genome are protein-binding sites located? 
Which DNA sequence does a particular TF bind? (e.g., Cai and Huang 2012) 

(2) Affinity/Specificity Measurements: How do the binding affinities of a TF vary for 
different sequences? How is the specificity of a TF measured? (e.g., Stormo and 
Zhao 2010) 

(3) Structure Determination: What is the structure of a DNA-protein complex? Which 
structural motifs do TFs use to bind to the DNA? (e.g., Harrison 1991) 

(4) Recognition Mechanism Identification: How does a TF recognize its specific binding 
site? What are the mechanisms by which a TF reads out the DNA? (e.g., Rohs et al. 
2010; Strauch 2001). 

In this paper, I focus on the fourth set of questions and examine whether causal graph 
theory is an adequate tool for modeling mechanisms of protein-DNA recognition, without 
claiming that there must be a single model that captures all the different aspects of protein-
DNA recognition and binding that are investigated in biological practice. To assess 
whether causal graph theory can be applied to mechanisms of protein-DNA recognition, I 
will first examine how biologists model and mechanistically explain how a TF recognizes 
its specific binding site. The aim of analyzing explanatory practice in biology is to reveal 
the kinds of information that are relevant to explaining this phenomenon and that thus must 
be included in any explanatory model of how protein-DNA recognition works.3 

Understanding the mechanisms of protein-DNA recognition has a long history. 
Initially, X-ray crystallography was used to uncover the structure of protein-DNA 
complexes (e.g., Pavletich and Pabo 1991). Crystallographic studies revealed that the 
surface of the DNA – in particular, its major groove – presents a distinctive pattern of 
hydrogen bond donors and acceptors and hydrophobic patches and that this pattern is 
recognized by a complementary set of donors and acceptors presented by the amino acid 
side chains of a TF. In other words, the TF recognizes the unique chemical signatures of 
the DNA bases of its binding site because its amino acids form a set of hydrogen bonds 
and hydrophobic contacts with the DNA bases. The specificity is conveyed not only 
through the number and kind of bonds formed but also through the uniqueness of the 
bonding geometry. These mechanisms of protein-DNA recognition are now commonly 
referred to as direct readout or “base readout” (Rohs et al. 2010, 233). 

                                                       
2 The list is not exhaustive and there are interconnections between different questions (e.g., the 
structure of a TF will co-determine its plausible recognition mechanism). 
3 The conditions under which mechanistic models of protein-DNA recognition are explanatory 
cannot simply be read off biological practice but must be critically reconstructed from it. This 
process involves also normative dimensions (Kaiser 2015, Chapter 2). 
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It was soon realized that the story is more complex than this because there is no 
one-to-one correspondence between DNA and protein sequences. For most TFs, the direct 
readout of base pairs through hydrogen bonds is thus not sufficient to explain their 
specificity. TFs recognize not only the chemical structure but also the shape of their DNA 
binding site. Depending on its sequence, DNA conformation can deviate from idealized B-
DNA in various ways, each of which can be recognized by certain TFs. One of these ways 
is for the overall cylindrical shape of the DNA double-helix to be deformed. For example, 
the DNA can be gradually bent, which can position elements of the DNA backbone such 
that these otherwise non-specific contacts can become highly specific (Figure 1a). Another 
of these ways is for the geometry of the DNA to vary locally, for example, for the minor 
groove to be narrowed or the DNA to possess a kink. Minor groove narrowing typically 
enhances negative electrostatic potential, which then can be read by TFs (Figure 1c/d). 
Local kinks promote DNA conformations that optimize protein-DNA and protein-protein 
contacts (Figure 1b). Recognition mechanisms such as these are called indirect readout or 
“shape readout” (Rohs et al. 2010, 233).  

 

 
 

Fig. 1: Examples of shape readout mechanisms (Rohs et al. 2010, Fig. 2) 

 

In sum, biologists explain how a particular TF recognizes its specific binding site 
by describing the direct and indirect readout mechanisms that the TF combines to achieve 
the specificity required for its correct functioning. This explanation not only involves 
specifying the linear sequences of DNA and TF binding sites and revealing their 
complementarity by identifying the contacts that are made between bases and amino acids. 
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It also requires describing their bonding geometry and how DNA and TF spatially fit, how 
the conformation of the DNA deviates from idealized B-DNA, and how this deviation 
facilitates further protein-DNA contacts. 

I conclude that three kinds of information are relevant to explaining how protein-
DNA recognition works: 

(1) Binding information about the kinds of bonds that are formed between amino acid 
residues and DNA base-pairs (direct contacts), and about the parts of the DNA and 
the TF that indirectly interact with each other (indirect contacts); 

(2) Chemical-structural information about the primary sequences of DNA and TF 
binding sites, about the complementarity of their chemical structures; 

(3) Spatial information about the conformations of DNA and the TF and why they 
spatially fit, about how the DNA shape contributes to recognition. 

Information of all three kinds is essential to explaining any mechanism of protein-DNA 
recognition because all three factors – causal interactions, chemical structural relations, 
and spatial relations – are all crucial to the working of these mechanisms. Understanding 
how a TF recognizes a specific DNA sequence (out of the millions present in the genome) 
requires knowing how the TF reads out the chemical structure of the DNA binding site, 
how the two molecules spatially fit together, and how the structural complementarity and 
spatial fit enable specific bonds to be formed. Hence, any explanatory model of protein-
DNA recognition is adequate only if it includes all three kinds of information. 
 

4. Just a Matter of Non-causal Explanation? 

Before I start modeling the phenomenon of protein-DNA recognition by means of causal 
graphs, this section addresses a possible objection and thereby further clarifies the main 
claim of the paper. One might object that I am accusing causal graph theory of not being 
able to do something that it was never intended to do, namely represent non-causal 
explanations such as the explanation of how a particular protein recognizes its specific 
binding site. My response to this objection is threefold. 

First, I do not agree that explanations of protein-DNA recognition are non-causal. 
Describing the recognition mechanisms that are at work in a particular case includes also 
specifying which functional groups of the DNA and the protein interact with each other to 
form certain kinds of bonds. The formation of chemical bonds, however, clearly is a causal 
process, which is why the explanation of protein-DNA recognition will be, at least 
partially, also causal. 

Second, granted that binding information is information about causal relations, an 
opponent might still insist that the rest of the explanation represents non-causal relations, 
namely chemical structures, shapes, and spatial relations. Since causal graph theory was 
designed to represent causal dependencies only, so the opponent, why should one care 
about the news that these non-causal relations cannot be adequately represented in a causal 
graph model? One possible response to this objection is to point to the fact that 
philosophers actually are interested in this question. Whether non-causal relations such as 
supervenience or constitution relations can be represented in causal graph models or can be 
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dealt with in an interventionist framework is controversially discussed (e.g., Casini et al. 
2011; Gebharter and Kaiser 2014; Woodward 2015; Baumgartner and Gebharter 2015). 
Thus, why not extend this discussion to other kinds of non-causal relations that play a 
central role in biological mechanisms? 

Third, another, stronger response is to challenge the assumption that chemical-
structural and spatial information are non-causal. According to many theories of causation, 
the shapes of DNA and the TF and the complementarity of their chemical structures turn 
out to be causes of the TF binding to DNA. In counterfactual terms, the complementarity 
of the chemical structures of DNA and the TF is a cause of the binding because if the 
chemical structures were not complementary, DNA and the TF would not bind. In an 
interventionist framework, for example, the bending of the DNA is a cause of the binding 
of a particular TF to the DNA because there is an ideal intervention such that if I intervene 
in the shape of the DNA and remove its bending, I will prevent the binding. Likewise, the 
3-dimensional conformation of the TF typically makes a difference to the binding and, 
thus, is a cause of it.4 But if much of the chemical-structural and spatial information 
describes causes, then the question of this paper seems to be even more pressing: Is there a 
way to include this causal information into a causal graph model? Can causal graph theory 
be used to model and explain spatially-structurally complex biological phenomena such as 
protein-DNA recognition, or does it reach its limits? 
 

5. How to Model Protein-DNA Recognition by Causal Graphs 

How can we construct a formal causal model of the mechanisms by which a TF recognizes 
its specific DNA binding site? What happens before the recognition is that the TF diffuses 
into the nucleus, establishes some non-specific electrostatic interactions with the DNA 
backbone, which allows it to slide along the DNA (Strauch 2001), and finally encounters 
the DNA binding site in proper orientation. If recognition then occurs, it results in the 
binding of the TF to the DNA.  

This causal chain of events (diffusion  non-specific interactions  encountering 
 binding) is useful in understanding the causal context of the recognition process, but it 
does not explain how recognition itself occurs and how it ensures the specificity of the 
binding. As I pointed out in Section 3, the latter requires, for instance, specifying which 
functional groups of the TF and the DNA encounter each other and which kinds of 
chemical bonds are formed. This binding information can be captured in a causal graph 
model not by introducing single variables for the encountering (E) and binding (B) of the 
TF and DNA, but rather by introducing fine-grained variables that represent sub-events, 
such as the encountering of a certain region of the protein with a certain region of the DNA 
(E1,E2…,En) and the formation of a certain kind of bond between a functional group of the 
protein and another of the DNA (B1,B2…,Bn). The resulting causal graph model M1 is 
depicted in Figure 2. 

 

                                                       
4 In contrast, proponents of a production theory of causation might argue that shapes and chemical 
structures of the TF and DNA are only constraints but not causes of their binding. 
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Fig. 2: Causal graph model M1 for protein-DNA recognition. 

 

In its simplest version, the variables in M1 are binary variables, representing events 
such as “TF diffuses into nucleus” (D), “non-specific electrostatic interactions between TF 
and DNA backbone” (N), “a certain region of TF encounters a certain region of DNA 
binding site” (En), and “formation of two hydrogen bonds between amine-residue of 
lysine25 and the carbonyl- and pyridyl-group of DNA base guanine26” (B2). As binary 
variables, each of them can take one of the two values “taking place” and “not taking 
place”. Alternatively, they might be interpreted as quantitative variables. D and N would 
then stand for the number or concentration of particular TFs diffusing into the nucleus and 
non-specifically interacting with the DNA backbone; E1,E2…,En and B1,B2…,Bn would 
stand for the number of encounterings and bond formations of the respective kinds. The 
arrows between the variables represent D being a direct cause of N, which is a direct cause 
of E1,E2…,En, which are direct causes of B1,B2…,Bn. The “+” stands for a positive causal 
influence: raising the probability that N takes a high value raises the probability that, for 
example, E3 takes a high value. Since the binding of an amino acid residue to a nucleotide 
base may raise the probability that another bond is established, the causal graph model also 
contains arrows between the B-variables (e.g., the arrow between B1 and B2). 
 

6. Where the Limits of Causal Graph Models Lie 

The causal graph model M1 succeeds in representing binding information. Explaining how 
a TF recognizes a specific DNA sequence out of the millions present in a genome, 
however, not only requires specifying the chemical bonds that are formed. It also requires 
elucidating the shapes of the TF and DNA, how they spatially fit, and how DNA 
conformation enables certain other interactions to occur (spatial information); and it 
requires revealing the complementarity of the chemical structures of the TF and DNA 
(chemical-structural information). The latter two kinds of information, however, are 
missing in M1. 

 The causal modelers might agree with me at this point and concede the inadequacy 
of M1. But they might insist that it is possible to render M1 adequate by including the 
missing explanatorily relevant spatial and chemical-structural information. I see two major 
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modeling strategies one could pursue. In what follows, I successively explain them and 
show why both fail to yield adequate explanations of protein-DNA recognition.5 

One option is to include the missing spatial and chemical-structural information 
into the characterization of the variables E1,E2…,En and B1,B2…,Bn. For instance, one could 
characterize B12 not only as “formation of two hydrogen bonds between amine-residue of 
lysine25 and the carbonyl- and pyridyl-group of DNA base guanine26” but add “… where 
the lysine25 residue is covalently bound to serine17 residue and leucine39 residue, forms a 
salt bridge to arginine9 residue, has a close distance to DNA bases cytosine28 and 
guanine42, etc.”.  

This strategy encounters three problems. First, storing complex spatial and 
structural information into the characterization of the variables renders M1 unmanageable 
because the measurement of the values of the variables becomes very complicated or even 
unfeasible in practice. This is a problem for causal models of this phenomenon in general, 
not a problem that pertains to explanation in particular. Second, the strategy results in a 
causal model in which the spatial and structural information is highly fragmented because 
information about the shapes of the TF and DNA, their spatial orientation to each other, the 
effect of DNA conformation on interactions between the TF and DNA, the chemical 
structures of the TF and DNA, and their complementarity is distributed over the variables 
E1,E2…,En and B1,B2…,Bn. This fragmentation is devastating to the explanatory power of 
the causal model since the resulting model fails to elucidate how spatial and chemical-
structural relations contribute to the specificity of the recognition process (e.g., that TF and 
DNA spatially fit together and that DNA deformation enables specific interactions between 
the two macromolecules). Third, the modeling strategy gives rise to a causal model in 
which a great deal of the explanatorily relevant information is contained in the 
characterization of the variables, and not in the causal graphs that represent causal 
dependency relations. This suggests that the causal graphs are less informative and bear 
less explanatory weight than the characterization of the variables. But this seems to conflict 
with the typical way of conceiving causal graph models and reinforces the impression that 
one tries to add something that does not really fit. 

A second option is to add to the causal model one or more variables that are 
supposed to represent the spatial and chemical-structural information. One could, for 
instance, add the variable S that stands for the TF and DNA having certain conformations 
and chemical structures, the TF being oriented towards the DNA such that certain amino 
acid residues encounter certain DNA bases, the sequences of the TF and DNA being 
complementary. The resulting causal model M2 is depicted in Figure 3. 

 

                                                       
5 I am not providing a strict impossibility argument here because I can only discuss those modeling 
strategies that seem most important and obvious to me. 
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Fig. 3: Causal graph model M2 for protein-DNA recognition. 

 

M2 accounts for the fact that whether or not a certain amino acid residue of the TF 
forms bonds to a certain DNA base depends not only on whether a particular TF region 
encounters the DNA binding site but also on whether the TF and DNA shapes enable the 
encountering in the first place (which is captured in Figure 3 by the arrow from S to E2), on 
whether TF and DNA structures are complementary, and on whether DNA deformation 
affects the binding (represented in Figure 3 by the arrows from S to B1 and Bn). 

Despite these advantages, the revised causal model M2 is still not satisfactory. First, 
it has the feel of putting the missing relevant spatial and chemical-structural information in 
“by hand”: something that does not smoothly, automatically fit must be added under 
additional, atypical efforts. What reinforces this feeling is that all different spatial and 
chemical-structural information is represented by a single variable. It would be more 
adequate to add different variables (S1,S2…,Sn) for the TF conformation, the DNA shape, 
the spatial orientation of the TF towards DNA, the amino acid sequence of the TF, the 
chemical structure of the DNA binding site, and the complementarity of the TF and the 
DNA structures. These different variables could also be quantitative variables that 
represent, for instance, relative distances among sets of TF molecules and sets of DNA 
molecules. But this modeling strategy encounters the problem that the variables are no 
longer conceptually independent of each other, which violates a central requirement of 
causal graph theory. For example, because a specific TF conformation (S3) requires a 
specific amino acid sequence (S5), a change in the value of S5 will simultaneously change 
the value of S3. Likewise, to say that TF and DNA binding sites are complementary (S2) is 
to say that certain kinds of chemical bonds can be formed (B1,B2…,Bn), which is why S2 
and B1,B2…,Bn will be conceptually dependent. Finally, even if we could add different 
variables for each element of spatial and chemical-structural information, the 
characterization of S1,S2…,Sn would remain very complex. This is due to the complexity of 
the shapes and spatial relations and to the large number of functional groups involved in 
the binding (cf. Rohs et al. 2010). The second modeling strategy thus encounters the same 
objections as the first: storing complex information into the characterization of the 
variables renders the causal model unmanageable and contradicts the basic assumption of 
causal graph theory that directed graphs that represent causal dependency relations are 
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central elements of causal models and thus are neither less informative nor bear less 
explanatory weight than the variables themselves.  

To conclude, even if it might be in principle or technically possible to include 
information about complex spatial relations and chemical structures into a causal graph 
model, this can only be done at the expense of the adequacy of the causal model as it 
renders the causal model non-explanatory (because the information gets highly 
fragmented) and unmanageable and entails inconsistencies with basic assumptions of 
causal graph theory (namely, that variables must be conceptually independent and that 
causal dependency relations are central). Hence, the causal graph approach reaches its 
limits when it comes to explaining spatially-structurally complex biological phenomena. 

 

7. Conclusions 

I agree that causal modeling is central to scientific practice and that formal theories of 
causal modeling and explanation, such as causal graph theory, are powerful. However, I 
think that their significance is not universal and that it is important to also notice the limits 
of causal graph theory. In this paper, I have used an example from molecular biology to 
reveal one of these limitations: causal graph models fail to provide causal explanations of 
biological processes that involve complex spatial and chemical-structural relations.  

My analysis of different modeling strategies has also shown why causal graph 
theory reaches its limits when trying to model cases such as protein-DNA recognition. One 
major obstacle is the huge extent and complexity of information about the parts of the 
involved molecules and their interactions that must be captured in the model. The other 
major obstacle is that there seems to be no way for a causal model to render intelligible the 
shapes of the two molecules, how they spatially fit together, and why this spatial fit 
enables certain other interactions to occur. 
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